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The relationship between the dynamical theories of electron and X-ray diffraction by periodic lattices. 
By P. GAUNT, Department of Physics, University of  Manitoba, Winnipeg, Canada 
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The dynamical theories of X-ray and electron diffraction can be expressed in similar Schr6dinger wave equa- 
tion forms. The detailed correspondence between the two phenomena then becomes directly obvious. 

Introduction 

Although it is well known that the wave-vector dispersion 
relationship obtained in the dynamical theories of electron 
and X-ray diffraction are similar, no attempt, to the author 's 
knowledge, has been made to investigate the detailed anal- 
ogy between the two phenomena (e.g. see the remarks of 
Hirsch, Howie, Nicholson, Pashley & Whelan, 1965). In 
fact, and perhaps not  surprisingly, the X-ray case can be 
readily expressed in a Schr6dinger equation form and com- 
pared term by term with the Schr6dinger equation appro- 
priate to electron diffraction. 

Electron diffraction 

The properties of a high-energy electron (,,, 100 keV) inside 
a crystal must satisfy the Schr6dinger equation: 

V 2~+ (2m/h 2) [ E -  V]V = 0 ,  (1) 

where the symbols have their usual meaning. The total 
energy of the electron, E, remains unchanged during its 
interaction with the crystal since elastic scattering only is 
being considered. The potential energy V inside the crystal 
is a periodic function of the lattice: 

- V(r)= ~ Vg exp 2~zig • r ,  (2) 
g 

where g are reciprocal lattice vectors of the crystal, r is a 
point in the crystal and the Vg are Fourier coefficients of 
potential. 

X-ray diffraction 

It  is assumed (James, 1958) that the diffracting crystal is 
electrically neutral and that the X-ray frequency is suf- 
ficiently high for the crystal to behave as an insulator. The 
Maxwell equations for an insulator may be developed to 
give (e.g., Ditchburn, 1963): 

V2~- r/ t92s 
C2 0t 2 , (3) 

where s is the electric field of the radiation and r/ is the 
dynamic dielectric constant. Thus, inserting s = So exp (iogt), 
where co is the angular frequency of the radiation, gives the 
wave equation: 

V2g + ?]O921~/C 2 = O .  (4) 

Now if P is the polarization of the medium, then: 

4nP = (q - 1)s 
= 4noe2s/mo92, 

where 0 is the crystal electron density and e and m are the 
charge and mass of the electron. This expression is valid as 
long as o9 is remote from any absorption frequency of the 
crystal atoms; therefore, equation (4) yields: 

V2I~ + C-2[o9 2 - -  4noe2/m]s = 0 .  (5) 

But the mass of the photon is ~ = hog/c 2, so that (5) can be 
written as: 

V2s + (~/h2) [ho9 - 47~oe2h/mog]s = 0 ,  (6) 

which is closely analogous to the Schr6dinger equation (1) 
for electron diffraction. In (6), however, the mass 2m for 
the electron is replaced by the relativistic photon mass ~ ,  
and the total energy E is replaced by the photon energy in 
vacuum hog. The 'potential energy' of the photon, 4zre2oh/ 
mog, is the fraction of the total energy ho9 which is stored in 
the medium. This arises because in vacuo the energy in an 
electromagnetic wave is proportional to Is[ and the energy 
stored in the medium is proportional to - P  • s. Therefore, 
the energy per photon stored in the medium is: 

V= -hogP"  s/ ls l  2 
= - hog(r/- 1) 
= 4rcoe2h/mog, 

which is the potential energy term of equation (6). 

In a crystal, the electron density is: 

o(r) = ~. eg exp 2~zig • r ,  
g 

where 0(r) is the electron density at point r and the eg are 
Fourier coefficients associated with reciprocal lattice points 
g of the crystal. 

Dispersion equations 

The solution of (1) and (6) are Bloch waves of the form: 

~(k)=  ~ exp 27ri(k+g) • r .  
g 

Solutions for the coefficients Cg can only found be if the 
wave vectors k in the crystal satisfy the dispersion equations 
(Hirsch et al., 1965): 

[KZ-(k+g)2]Cg(k)+ ~ UhCg_h(k)=0, (7) 
h ~ 0  
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where for the electron case: 

K 2 = (2m/h  2) [E+ V0] 

Uo= (Zm/h2) Vo , 

and for the X-ray case: 

K 2 = c-2[v 2 -- 4Z~Qoe2/mrc] (8) 

U9= - e2Qo/(rcmc2) . 

Since in the X-ray case 1"/is only very slightly greater than 
unity, D can replace e in (6) with negligible error. The 
solutions of (7), therefore, give the allowed values of the 
wave vector k for each Bloch wave excited in the crystal. 

shown above, however, manipulation of the Maxwell equa- 
tions gives a 'single photon Schr/Sdinger equation'  in which 
the potential energy term is the fraction of the photon 
energy stored in the polarized lattice. The Bloch wave 
solutions and dispersion relationships then follow because of 
the periodic electron density in the lattice. The mathematical 
formalism is, thus, somewhat simplified, and the analogy 
to electron diffraction by a periodic potential is made 
obvious. 

This work was supported by the National  Research Coun- 
cil of Canada under grant number A5030. 

Discussion 

The above treatment of dynamical theory gives explicitly 
the close relation between X-ray and electron scattering by 
crystals and shows in detail why the dispersion equations 
for the two phenomena have a similar form. The usual 
treatment of X-ray dynamical theory, following Laue (1931) 
and James (1958) assumes that the 'polarizibility', (1 - 1/q), 
is a periodic function of the lattice and then Bloch wave 
solutions are inserted into the basic Maxwell equations. As 
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Comments are made on papers by Cerrini, Cruickshank and Scheringer on representations of the harmonic 
vibration tensor U with respect to different bases. 

The paper by Cerrini (1971) on anisotropic harmonic 
vibrations in affine (triclinic) coordinate systems is very 
helpful in clarifying my paper (Cruickshank, 1956) and its 
relation to the apparently contradictory analysis of 
Scheringer (1966). The 1956 paper was less explicit than it 
should have been, and it would have been much better if it 
had used, as Cerrini has used, the upper- and lower-suffix 
notat ion for contravariant and covariant tensor compo- 
nents. The attempt in 1956 to keep the notation simple has 
led to some confusion, and an indication now of what 
should have been added to the 1956 paper and of its rela- 
tion to a 1961 paper may be helpful. 

Cerrini uses the following symbols for base axes: 
at ( i= 1,2,3) are the direct axes, and a t are the corre- 
sponding reciprocal axes (at .  a J = 3{). These are called the 
frame (at, at), and (e,  e t) is the frame for which et are unit 
vectors parallel to at; the e t are parallel to a t, but are not of 
unit length for general triclinic direct axes. ( f ,  f9  is the 
frame for which ft are unit vectors parallel to ai; the ft are 
parallel to at, but are not of unit length for general triclinic 
direct axes. Sets et, e t, ft, ft are identical and of unit lengths 
only when al (hence also a t) are an orthogonal set. [The 
reader should beware of the misprint in the third line of the 
third paragraph of Cerrini's ' Introduction'  where the direct 
axes are printed a t in error for al. A misprint also occurs in 
the middle of the left-hand column of p. 132 where 
U,(cos 01) 2 should read U"(cos 0l)2.] 

A confusion in notat ion that can occur is that the symbol 
x may be used to denote either a vector or a set of vector 
components. Of itself, the vector has no algebraic form, but 
when a frame (a ,  a t) is defined, we write 

X = x~al + x2a2 + x383 

= x l a  1 + x2 a2 -~ x3 a3. 

The point to be watched comes if the component array 
(x~,x2,x 3) is called x. In tensor language both (x~,x2,x 3) 
and (xl, x2, x3), together with an infinity of arrays for other 
frames, are all representations of  the vector x. Similarly, 
symbol U, according to context, may denote either the 
vibration tensor U or one of the 3 x 3 matrix arrays U tj 
and Utj, which are the contravariant and covariant repre- 
sentations of the tensor with respect to the frame (a ,  at). 

Cerrini's discussion shows that in equations (1.5)-(1.7) 
and the Appendix of my 1956 paper symbols x and U are 
the contravariant arrays x t and U t j, and the 1956 symbols 
'xt' and 'Utj' are also these contravariant arrays, while the 
symbols s and st are the covariant array st. The 1956 symbol 
U-~ is Cerrini's covariant array Vtj. With these interpreta- 
tions, equations (1.5)-(1.7) and the Appendix are true for 
any frame (a ,  at). 

In equations (2.1) and (2.2), a particular choice of recip- 
rocal base is implicit in the exponential term 

exp [ -  2rcZ(h2a*Z'Uu'+ ...)] . 


